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Abstract This paper investigates several power allocation

policies in orthogonal frequency division multiplexing -

based cognitive radio networks under the different avail-

ability of inter-system channel state information (CSI) and

the different capability of licensed primary users (PUs).

Specifically, we deal with two types of PUs having different

capabilities: a dumb (peak interference-power tolerable) PU

and a more sophisticated (average interference-power tol-

erable) PU. For such PU models, we first formulate two

optimization problems that maximize the capacity of unli-

censed secondary user (SU) while maintaining the quality

of service of PU under the assumption that both intra- and

inter-system CSI are fully available. However, due to loose

cooperation between SU and PU, it may be difficult or even

infeasible for SU to obtain the full inter-system CSI. Thus,

under the partial inter-system CSI setting, we also formulate

another two optimization problems by introducing inter-

ference-power outage constraints. We propose optimal and

efficient suboptimal power allocation policies for these four

problems. Extensive numerical results demonstrate that the

spectral efficiency achieved by SU with partial inter-system

CSI is less than half of what is achieved with full inter-

system CSI within a reasonable range of outage probability

(e.g., less than 10 %). Further, it is shown that the average

interference-power tolerable PU can help to increase the

saturated spectral efficiency of SU by about 20 and 50 % in

both cases of full and partial inter-system CSI, respectively.

Keywords Cognitive radio � Power allocation � Inter-

system channel state information � Interference tolerability

1 Introduction

1.1 Motivation

With the rapid growth of bandwidth hungry applications

and the emergence of diverse wireless systems, the demand

for spectrum has increased in recent years and is expected

to grow even more in future wireless networks [1, 2]. In

traditional approach of spectrum management, government

agencies such as the Federal Communications Commission

(FCC) in the United States regulate the spectrum allocation

by exclusively allocating the frequency band to different
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multiple wireless systems or operators. However, recent

studies based on field measurements [3] have revealed that

large portions of allocated spectrum bands are unused.

Cognitive radio has been considered as a very promising

technology to efficiently utilize the scarce spectrum (inher-

ently a limited natural resource) [4] and is also being con-

sidered in a standardization body such as IEEE 802.22 WRAN

(Wireless Regional Area Network), where the white spaces of

television bands can be opportunistically used [5, 6]. The term,

cognitive radio (CR), is first introduced by Mitola [7], is a

flexible and intelligent wireless technology that is aware of its

surrounding environment. In spectrum sharing based CR

networks, where a secondary (unlicensed) system coexists

with a primary (licensed) system, a fundamental design

challenge is how to maximize the throughput of secondary

user (SU) while ensuring the quality of service (QoS) for

primary user (PU) such as throughput, outage probability or

maximum interference. Based on how not to harm the PU,

transmission modes in CR networks are classified into three

types: interweaved, overlay and underlay modes [8].

In the interweaved mode, the SU can utilize unused

license bands, i.e., spectrum holes. The SU transmitter (SU-

Tx) in this mode needs to have the real-time functionality for

monitoring and detecting the spectrum holes that change with

time and geographic location. Several spectrum-sensing

techniques [9, 10] and spectrum-sharing [11, 12] strategies

based on game theory have been proposed. The overlay

mode enables the SU to utilize the license band even if the

PU is using the band. The SU-Tx is assumed to have perfect

knowledge about PU’s message. Therefore, the SU-Tx may

use this knowledge to mitigate the interference seen by its

receiver using dirty paper coding and/or to relay the primary

signal to compensate for signal-to-noise ratio at the PU

receiver (PU-Rx). Devroye et al. [13] proposed a genie-aided

CR channel model and derived the fundamental information-

theoretical limits. In the underlay mode, simultaneous

transmissions are also allowed on condition that the SU-Tx

interferes with the PU-Rx below than a certain threshold, so-

called interference-temperature. Ghasemi et al. [14] ana-

lyzed SU’s capacity in fading environments, but only under a

received interference-power constraint at the PU-Rx. How-

ever, since the transmit-power at the SU-Tx is also limited by

hardware capabilities and safety requirements in practice,

this needs to be jointly considered.

Meanwhile, OFDM (orthogonal frequency division mul-

tiplexing) technology has been adopted by most of current

wireless communication systems due to its robustness to

multi-path fading and the high degree of flexibility in

resource allocation. While the underlay mode is usually

associated with UWB (ultra wide band) and spread spectrum

technologies, there are several recent works in literature

[15–19] considering OFDM as a physical-layer technique in

both interweave and underlay modes. In the interweave

mode, once the idle status of subchannels is identified, the

resource allocation problem is almost the same as the con-

ventional problem with the set of available subchannels.

However, in the underlay mode, the resource allocation

problem is completely different due to the simultaneous

transmissions of the primary and secondary systems.

In this paper, we concentrate on the underlay mode and

develop power allocation policies in the OFDM-based CR

networks. We basically assume that intra-system channel state

information (CSI) is fully available to PU-Tx and investigate

the performance of several power allocation policies under the

different availability of inter-system CSI to PU-Tx (i.e., both

full and partial inter-system CSI). Throughout the paper, we

treat the partial CSI as follows: the SU-Tx has knowledge only

about the average channel gain over all the subchannels

instead of individual channel gain for each subchannel. In

addition, we also deal with a little considered problem so far:

(i) what are the ramifications of different capabilities of the PU

and (ii) how much more capacity could be obtained if the SU is

operating in the same band with a more sophisticated (average

interference-power tolerable) PU instead of a dumb (peak

interference-power tolerable) PU.

1.2 Related work

The optimal and suboptimal power allocation algorithms in

the underlay CR setting have been developed for OFDM

systems without transmit-power constraint [14, 18, 19] and for

multiple input multiple output (MIMO) systems [20]. In order

to keep the interference at the PU-Rx below a desired level,

these papers assumed that the SU-Tx is fully aware of the

channel from the SU-Tx to the PU-Rx. However, compared to

the intra-system channel state information (CSI) between the

SU-Tx and the SU receiver (SU-Rx), which is relatively easy

to obtain, it would be difficult or even infeasible for the SU-Tx

to obtain full inter-system CSI because the primary and sec-

ondary systems are usually loosely coupled (i.e., no explicit

communication between them). Even if they are tightly cou-

pled, obtaining full inter-system CSI may be a big burden for

the SU due to a large amount of feedback overhead. Therefore,

assuming only partial CSI between the SU and the PU seems

to be a reasonable approach.

The impact of imperfect channel knowledge and capacity

maximization problems with partial CSI have been exten-

sively investigated in the non-CR setting (see [21, 22] and

references therein). However, these studies are not directly

applicable to our CR setting which has two-dimensional

channels: intra-system CSI (between SU-Tx and SU-Rx)

and inter-system CSI (between SU-Tx and PU-Rx). Zhang

et al. [23] investigated a robust cognitive beamforming

problem with partial CSI in MISO (multiple input single

output) and MIMO environments. Huang et al. [24] studied

the resource allocation problem in OFDM-based CR
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networks with partial CSI, where the authors assumed

partial intra-system CSI and full inter-system CSI. How-

ever, as we mentioned above, the partial inter-system CSI is

more reasonable rather than the partial intra-system CSI

assumption. Furthermore, there are several studies on the

capacity analysis of CR network with imperfect channel

knowledge in flat-fading environment and these studies

assumed that the CSI obtained by the secondary user

experiences the channel estimation error [25, 26], while we

consider the frequency selective fading environment and

assume that the secondary user only knows the statistical

properties (e.g., average channel gain) of the inter-system

CSI.

1.3 Main contributions and organization of the paper

We would like to mention that this paper is an extended

version of our own prior work, [1] and [2], each of which

only focuses on power allocation policies with either full

inter-system CSI1 or partial inter-system CSI2,

respectively.

Beyond the algorithmic contribution, this paper has its

own in a different perspective because it contains valuable

observations that have not been fully understood yet in

existing works. Our novel contributions are summarized as

follows: (i) Contrary to existing works that only focused on

either partial or full inter-system CSI, this paper have

investigated power allocation policies under both partial

and full CSI, and further compared their performance with

each other. (ii) It has been analytically and numerically

verified that the average interference-power tolerable PU is

superior to the peak interference-power tolerable PU. (iii)

We further investigated the effect of channel correlation by

adjusting the level of frequency selectivity. (iv) In addition,

we have provided an interesting scenario with multiple

primary and secondary receivers to see their effect on the

performance.

The remainder of this paper is organized as follows. In

Sect. 2, we formally describe our system model including our

full/partial CSI assumption, and then present an objective

and several constraints. In Sects. 3 and 4, we propose optimal

and efficient suboptimal power allocation policies with full

and partial inter-system CSI, respectively. In Sect. 5, we

evaluate and compare the proposed power allocation poli-

cies. Finally, we conclude the paper in Sect. 6.

2 Model description

2.1 System model

We consider a CR system with a pair of primary transmitter

and receiver and a pair of secondary transmitter and

receiver, as shown in Fig. 1. The extension to multiple

primary and/or secondary receivers will be discussed later

on. Both the primary and secondary systems are assumed to

be OFDM-based systems using the same spectrum resource

for their transmissions. Denote by N ¼ f1; . . .;Ng the set

of subchannels available.

A channel response from the SU-Tx to the SU-Rx is

denoted by h22 ¼ ½h1
22; . . .; hN

22�
T
. Similarly, the channel

responses from the PU-Tx to the PU-Rx, from the PU-Tx to

the SU-Rx and from the SU-Tx to the PU-Rx are denoted

by vectors h11 ¼ ½h1
11; . . .; hN

11�
T ; h12 ¼ ½h1

12; . . .; hN
12�

T
and

h21 ¼ ½h1
21; . . .; hN

21�
T
, respectively. Let gij

n = |hij
n|2 denote

the channel gain from i to j on subchannel n.

The primary system allocates its power regardless of the

secondary’s operation prior to the power allocation of the

secondary system. Hence, the SU-Rx is able to measure the

amount of interference on each subchannel from the PU-Tx

and send this information to the SU-Tx. In addition,

assume that the SU-Tx has full CSI for its own link h22. In

other words, it knows instantaneous frequency-selective

channel gains g22
n for all subchannels n. On the other hand,

measuring the inter-system channel gain g21
n may or may

not be so easy as the intra-system channel gain g22
n . In this

paper, we take both cases into consideration.

2.1.1 Full inter-system CSI

First, we assume that the SU-Tx has full CSI for the inter-

system link h21. To this end, a brute-force approach is the

use of explicit feedback between two systems. An implicit

estimation method can be used as well. For example,

suppose that the primary system is IEEE 802.16e system

operating in time division duplex (TDD) mode, i.e., the

Fig. 1 A channel model for OFDM-based CR networks with full

intra-system CSI and full/partial inter-system CSI

1 Kang et al. [31] have derived similar results for the case of full

inter-system CSI. However, our research has been produced totally

independent from them, and moreover, our previous conference paper

[1] was presented more than one year earlier.
2 There was a follow-up research [36], where the authors have

developed a heuristic algorithm to improve the complexity (i.e.,

running time) of our algorithms in [2] by removing the loop of binary

search at the cost of slight loss in performance.
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PU-Tx is a base station (BS) and the PU-Rx a mobile

station (MS), respectively. The MS transmits channel

sounding waveforms on the uplink (MS-to-BS) to enable

the BS to estimate the BS-to-MS channel gain under the

assumption of TDD reciprocity [27]. The SU-Tx can also

overhear this uplink channel sounding signal and measure

the channel gain between the MS (PU-Rx) and itself in a

similar way. Even though the above method is not appli-

cable, this result still provide the upper-bound performance

in the underlay CR networks.

2.1.2 Partial inter-system CSI

Due to the lack of inter-system cooperation, it may not

be possible to obtain full inter-system CSI. Instead, we

assume that the PU intermittently informs the SU-Tx of

only partial CSI about h21. Based on the assumption that

a subchannelization with sufficient interleaving depth is

applied, we use an uncorrelated fading channel model

[28]. Therefore, in this case, the h21 is a zero-mean

complex Gaussian random vector and the channel gains

g21
n = |h21

n |2 for all subchannels are independent and

identically distributed (i.i.d.) exponential random vari-

ables with mean k21. The partial CSI includes this

average channel gain k21, and we make a further

assumption that the channel is time-varying and fre-

quency-selective but the mean remains unchanged until

the next feedback.

2.2 Our objective and constraints

In this paper, our goal is to determine the optimal transmit

power allocation vector p2 of SU-Tx that maximizes the

capacity of the SU operating while maintaining the QoS of

the PU under the given power budget. To this end, we

mathematically formulate the following objective function:

max
p2

X

n2N
B log2 1þ 1

C
gn

22pn
2

gn
12pn

1 þ N0B

� �
; ð1Þ

where p1 ¼ ½pn
1; n ¼ 1; 2; . . .;N� and p2 ¼ ½pn

2; n ¼
1; 2; . . .;N� are the non-negative power allocation vectors

of PU-Tx and SU-Tx, respectively; N0 denotes the noise

power spectral density and B denotes the subchannel

bandwidth. Here, a parameter C� 1 denotes the signal-to-

interference-plus-noise ratio (SINR) gap to ideal Shannon

capacity, which is a function of the desired BER (bit error

rate), coding gain and noise margin [29].

There are basically two types of constraints on the

power allocation. One is a transmit-power constraint at the

SU-Tx and the other is an interference-power (outage)

constraint at the PU-Rx.

2.2.1 Total transmit-power constraint

This is a conventional constraint which ensures the sum of

power allocated over all subchannels is within a power

budget Pmax.
X

n2N
pn

2�Pmax: ð2Þ

2.2.2 Interference-power constraints

We deal with two types of PUs having different interfer-

ence tolerability. One is a dumb (peak interference-power

tolerable) system that can tolerate a certain amount of peak

interference at each subchannel. The other is a more

sophisticated (average interference-power tolerable) sys-

tem that can tolerate the interference as long as the average

interference over all subchannels is within a certain

threshold. Under the full inter-system CSI assumption, we

have the following interference-power constraints.

peak: gn
21pn

2 � In
max; 8n 2 N ; ð3Þ

average:
1

N

X

n2N
gn

21pn
2 � Imax: ð4Þ

The constraint (3) ensures that the amount of the interference

at each subchannel n is less than Imax
n and the constraint (4)

ensures that the average amount of the interference received

over all subchannels is less than Imax. We call Imax
n and Imax

the peak and the average interference temperature levels,

respectively. The basic rationale behind this averaging in (4)

is that even though there is large interference in some sub-

channels, small interference in the other subchannels may

compensate for the performance of PU in an average sense.

2.2.3 Interference-power outage constraints

Since we cannot strictly guarantee the amount of interfer-

ence-power under the partial inter-system CSI assumption,

we consider the following interference-power outage con-

straints instead.

peak: PoutðpÞ ¼ Pr ½gn
21pn

2 [ In
max� � �; 8n 2 N ; ð5Þ

average: PoutðpÞ ¼ Pr
1

N

X

n2N
gn

21pn
2 [ Imax

" #
� �; ð6Þ

where the QoS of the PU is guaranteed by keeping an

outage probability within a target level �. The outage

probability Poutð�Þ is defined as the probability that the

interference-power to the PU is greater than a threshold,

i.e., the interference-temperature level Imax
n or Imax.

Remark 1 If PU’s own channel is pretty good, i.e., in the

bandwidth efficient region, then the PU can tolerate
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interference from the SU to a certain extent. Otherwise, in

the power efficient region, however, small interference can

deteriorate the performance of the PU much. Thus, one

could also adaptively change the interference temperature

level according to the channel state of the primary system.

In this paper, however, we assume that the interference

temperature level is given and fixed in a conservative

manner, and known at the SU-Tx. We rather focus on the

optimal power allocation policy for the SU-Tx for the

given interference temperature level. The adaptation of

the interference temperature level is beyond the scope of

the paper and we leave it as a future study.

3 Case I: full inter-system CSI

We shall start by deriving the optimal power allocation

policies under the assumption of full inter-system CSI. For

notational simplicity, we denote pn¼: pn
2; gn

2¼
:

gn
22; gn

1¼
:

gn
21

and mn¼: Cðgn
12pn

1 þ N0BÞ, use log instead of log2, and drop

B throughout the paper.

3.1 Capacity maximization of SU with peak

interference-power tolerable PU: [CM-Peak-Full]

We assume that the PU is a dumb (peak interference-power

tolerable) system that can tolerate a certain amount of peak

interference at each subchannel. Thus, in this setting, we

first consider a capacity maximization problem under the

total transmit-power constraint (2) and the peak interfer-

ence-power constraint (3).

[CM-Peak-Full]:

max
p� 0

X

n2N
log 1þ gn

2pn

mn

� �
ð7Þ

subject to
X

n2N
pn�Pmax ð8Þ

gn
1pn� In

max; 8n 2 N ; ð9Þ

This problem is a convex optimization problem [30]

because a concave function is to be maximized over a

convex constraint set and, thus, a unique global solution

exists. The constraint (9), which limits the maximum

allowable transmit power on the subchannel n to Imax
n /g1

n, is

additionally introduced to the classical water-filling prob-

lem [34]. Thus, we can obtain the following optimal power

allocation policy, so called capped water-filling [20]3:

Algorithm for [CM-Peak-Full]

pn ¼ 1
k� mn

gn
2

h iIn
max=gn

1

0
; 8n; (10)

where z½ �ba¼
:

min max a; z½ �; b½ �; k is a non-negative Lagrange

multiplier associated with the total transmit-power constraint (8)

and is chosen such that a function

hðkÞ¼:
P

n pnðkÞ �min Pmax;
P

n
In
max

gn
1

h i
is equal to zero.

Figure 2 shows the graphical interpretation of the capped

water-filling. Note that the maximum allowable transmit

power on each subchannel is represented as a dotted rect-

angular box. In order to obtain the solution in (10), we can

use an iterative algorithm based on a gradient method

which starts from an initial water-level k, and increases (or

decreases) k with a small step-size if h(k) is greater (or less)

than zero until reaching close enough to the optimal solution.

3.2 Capacity maximization of SU with average

interference-power tolerable PU: [CM-Avg-Full]

We consider another capacity maximization problem by

replacing the peak interference-power constraint (3) with the

average interference-power constraint (4). In this problem,

we assume that the PU operates in a more sophisticated

system rather than the dumb system. Thus, the PU can tol-

erate up to a certain amount of average interference.
[CM-Avg-Full]:

max
p� 0

X

n2N
log 1þ gn

2pn

mn

� �
ð11Þ

subject to
X

n2N
pn�Pmax; ð12Þ

1

N

X

n2N
gn

1pn� Imax; ð13Þ

This problem is also a convex optimization problem, and

thus, a unique global solution exists. The optimal power

Fig. 2 The graphical interpretation of capped water-filling

3 It should be noted that some works in literature [20, 31, 32] obtain

the similar forms of solutions in different problem settings. The

terminology capped water-filling comes from the analogy of pouring

water into a vessel with both a bumpy ground and a maximum cap.
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allocation policy can be obtained as the following modified

water-filling:

pn ¼ 1

kþ gn
1l
� mn

gn
2

� �þ
; 8n 2 N ; ð14Þ

where z½ �þ ¼: max z; 0½ �; k and l are a non-negative

Lagrange multipliers associated with the total transmit-

power constraint (12) and the average interference-power

constraint (13), respectively. Based on whether the con-

straint (12) and/or the constraint (13) are active, we can

classify the solution into three cases as follows:

1. Power-limited case (k[ 0 and l = 0):

pn ¼ 1
k� mn

gn
2

h iþ
, where k is chosen such that the

transmit-power constraint (12) holds with equality,P
n pn = Pmax. This case is exactly the same as the

classical water-filling solution.

2. Interference-limited case (k = 0 and l[ 0):

pn ¼ 1
gn

1
l� mn

gn
2

h iþ
, where l is chosen such that interfer-

ence-power constraint (13) holds with equality,
1
N

P
n gn

1pn ¼ Imax. Using the change of variable

epn ¼ gn
1pn, this case also can be converted into the

classical water-filling solution. epn ¼ 1
l�

mngn
1

gn
2

h iþ
,

where l is chosen such that
P

n
epn ¼ N � Imax.

3. Both-limited case (k[ 0 and l[ 0):

pn ¼ 1
kþgn

1
l� mn

gn
2

h iþ
, where k and l are chosen such that

the both constraints hold with equality,
P

n pn = Pmax

and
P

n gf
1pn ¼ N � Imax.

Proposition 1 If the solution of [CM-Avg-Full] is in the

both-limited case, then the optimal Lagrange multipliers k
and l are always less than or equal to kP and lI, respectively:

k� kP and l� lI ; ð15Þ

where kP and lI are the Lagrange multipliers obtained by

assuming the solution is in the power-limited and inter-

ference-limited cases, respectively.

Proof We prove this proposition by contradiction. Sup-

pose that k[ kP. Since the channel gain g1
n and l are

positive, consequently 1
kþgn

1
l \ 1

kP
holds. Hence, we can

obtain the following relationship between pn and pP
n that are

the optimal power allocation in the both-limited case and

the power allocation obtained by assuming the solution is

in the power-limited case, respectively:

pn
P ¼

1

kP
� mn

gn
2

� �þ ¼ pn ¼ 0; if kP [ gn
2;

[ pn� 0; otherwise;

�
8n 2 N :

ð16Þ

Since there should exist at least one pP
n with a positive

value, we can derive
P

n pP
n [

P
n pn by summing (16)

over all subchannels. This contradicts the fact that the

summation of powers in both power-limited and both-

limited cases are the same as Pmax. In a similar way, one

can prove l B lI. This completes the proof. h

The following algorithm describes the detailed proce-

dure for [CM-Avg-Full] with the help of Proposition 1 that

allow us to reduce the search space in the STEP 3 and

speedup the algorithm.

Algorithm for [CM-Avg-Full]

1: Power-limited case

p; kPð Þ ¼WaterFilling ðfgn
2g;PmaxÞ.

If 1
N

P
n gn

1pn\Imax, then go to Finish.

2: Interference-limited case

ep;lIð Þ ¼WaterFilling ðfgn
2=gn

1g;N � ImaxÞ.
If
P

n pn ¼
P

n
fpn=gn

1\Pmax, then go to Finish.

3: Both-limited case

Set lmin = 0 and lmax = lI. Repeat the following operations

until lmax - lmin B d, where d is a small positive constant

which controls the algorithm accuracy.

• Set l ¼ 1
2

lmax þ lminð Þ and find the minimum k 2 ð0; kP�
satisfying

P
n

1
kþgn

1
l� mn

gn
2

h iþ
¼ Pmax.

• Obtain power vector p by putting k and l into (14).

• If 1
N

P
n gn

1pn� Imax, then lmax = l; otherwise, lmin = l.

4: Finish: (k, l) are the optimal Lagrange multipliers and p is the

optima power allocation

Remark 2 Technically speaking, we can find the optimal

power allocation by running only the STEP 3 with arbitrary

initial values (k, l). However, in general, finding the

optimal solution in the both-limited case requires higher

computational complexity than for the conventional water-

filling algorithm. This is because we need to determine

Lagrange multipliers (k, l) in a two-dimensional space.

Besides, the optimal solution mostly falls on the power-

limited or the interference-limited case rather than the

both-limited case. This is why the proposed algorithm first

checks whether the optimal solution belongs to the power-

limited or the interference-limited case. In either case, a

fast conventional water-filling algorithm [33] can be used

to obtain the solution. If neither case meets the optimality

condition, then we can infer that the optimal solution

occurs at the both-limited case.
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3.3 Extension to multiple primary and/or secondary

receivers

If there are multiple SU-Rxs (say, K), then the best strategy

for the SU-Tx is to choose the SU-Rx at each subchannel

n having the highest channel maxk g2,k
n /mk

n from the SU-Tx to

the k-th SU-Rx. If there are multiple PU-Rxs (say, M), then

the number of interference-power constraints will increase

up to M. Let g1,m
n denote the channel gain from the SU-Tx to

the m-th PU-Tx. Consequently, the constraint (9) in [CM-

Peak-Full] and the constraint (13) in [CM-Avg-Full] are

replaced by the following constraints, respectively:

gn
1;mpn� In

max;m; 8n; 8m; ð17Þ

1

N

X

n2N
gn

1;mpn� Imax;m; 8m; ð18Þ

where Imax,m
n and Imax,m are the peak and the average

interference temperature level for the m-th PU.

Therefore, the optimal power allocation policies for [CM-

Peak-Full] and [CM-Avg-Full] can be extended to the scenarios

having multiple primary and/or secondary receivers as follows:

[CM-Peak-Full] with multiple PU-Rxs and/or SU-Rxs:

pn ¼ 1

k
� 1

maxk gn
2;k=m

n
k

" #minm In
max;m=gn

1;m

0

; ð19Þ

[CM-Avg-Full] with multiple PU-Rxs and/or SU-Rxs:

pn ¼ 1

kþ
P

m gn
1;mlm

� 1

maxk gn
2;k=m

n
k

" #þ
; ð20Þ

As expected, the increase of the number of primary

receivers M leads to additional constraints limiting the

power of the SU-Tx (see the minimum operation in (19)

and the summation in (20)), which results in the reduction

of capacity. On the other hand, the increase of the number

of secondary receivers K gives a multi-user diversity gain

[see the maximum operation in (19) and (20)] to the SU-

Tx, which results in the increase of capacity.

4 Case II: partial inter-system CSI

In this section, we propose power allocation policies under

the assumption of partial inter-system CSI.

4.1 Capacity maximization of SU with peak

interference-power tolerable PU:

[CM-Peak-Partial]

The third problem assumes that the PU is peak interfer-

ence-power tolerable. Thus, in this problem, we attempt to

find an optimal power allocation vector p for maximizing

the capacity under the total transmit-power constraint (2)

and the peak interference-power outage constraint (5).

[CM-Peak-Partial]:

max
p� 0

X

n2N
log 1þ gn

2pn

mn

� �
ð21Þ

subject to
X

n2N
pn�Pmax; ð22Þ

PoutðpÞ ¼ Pr½gn
1pn [ In

max� � �; 8n 2 N : ð23Þ

Similar to the previous problem [CM-Peak-Full], the

problem [CM-Peak-Partial] is the same as the classical

water-filling problem [34] except the peak interference-

power outage constraint (23). Since g1
n is assumed to follow

an exponential distribution, we can rewrite this constraint

(23) as follows:

pn� In
max

F�1
E 1� �ð Þ ; 8n 2 N ; ð24Þ

where F�1
E ð�Þ is the inverse cumulative density function

(CDF) of an exponential distribution with the mean k21. It

is worthwhile to mention that F�1
E 1� �ð Þ can be interpreted

as effective channel gain. The modified constraint (24),

which limits the maximum allowable transmit power on

each subchannel, is additionally introduced into the clas-

sical water-filling problem. Thus, we can obtain the fol-

lowing optimal power allocation policy.

Algorithm for [CM-Peak-Partial]

pn ¼ 1
l� mn

gn
2

h iIn
max=F�1

E 1��ð Þ

0
; 8n 2 N ; (25) where

z½ �ba¼
:

min max a; z½ �; b½ �; l is a non-negative Lagrange multiplier

associated with the total transmit-power constraint (22) and is

chosen such that

P
n2N

pn ¼ min Pmax;
P

n2N

In
max

F�1
E

1��ð Þ

" #
. (26)

4.2 Capacity maximization of SU with average

interference-power tolerable PU:

[CM-Avg-Partial]

In our final problem, we try to find an optimal power

allocation vector p for maximizing the capacity under the

total transmit-power constraint (2) and the average inter-

ference-power outage constraint (6).

[CM-Avg-Partial]:

max
p� 0

X

n2N
log 1þ gn

2pn

mn

� �
ð27Þ

Wireless Netw (2013) 19:99–113 105

123



subject to
X

n2N
pn�Pmax; ð28Þ

PoutðpÞ ¼ Pr
1

N

X

n2N
gn

1pn [ Imax

" #
� �: ð29Þ

To deal with the problem [CM-Avg-Partial], let us

introduce random variables Xn = png1
n for all subchannels

n, which are independently exponential distributed with

mean pnk21, and X denotes the sum of these random

variables. Then, the average interference-power outage

constraint (29) can be rewritten as

Pr X ¼
X

n2N
Xn [ N � Imax

" #
� �: ð30Þ

To further examine this constraint (30), it is necessary to

know the distribution of X. If the transmit power is equally

allocated to all the subchannels, i.e., pn = p for all n 2 N ,

then X follows an Erlang distribution (the sum of several

i.i.d. exponential variables), X�Erlang N; 1=ðpk21Þð Þ.
Hence, the upper bound power p satisfying the outage

constraint can be easily found.

However, in general, the power allocation at the SU-Tx is

not even in order to exploit the frequency-selectivity of the

channel. Since it is hard to explicitly determine the distri-

bution of X for the general power allocation, we use the

Gaussian approximation based on the Lyapunov’s central

limit theorem (CLT) [35]. In order to apply the Lyapunov’s

CLT, the following Lyapunov condition should be satisfied:

lim
N!1

PN
n¼1 r3

n

� �1
3

PN
n¼1 r2

n

� �1
2

¼ 0; ð31Þ

where rn is defined as the third central moment of the

random variable Xn, i.e., E ðXn � mnÞ3
h i

; mn and rn
2 rep-

resent the finite mean and variance of the exponential

distributed random variable Xn, respectively. Please refer to

Appendix for the detailed proof of this condition.

Thus, for a large number of subchannels, X can be

approximated as a normally distributed random variable

with mean m and variance r2:

m ’
X

n

pnk21 and r2 ’
X

n

ðpnk21Þ2: ð32Þ

Thus, we can rewrite the constraint (30) as:

PoutðpÞ ¼ 1� FNðNImaxÞ ð33Þ

¼ 1

2
erfc

NImax � mffiffiffi
2
p

r

� �
� �; ð34Þ

where FNð�Þ is the CDF of a normal distribution with mean

m and variance r2, and erfcðzÞ ¼ 2ffiffi
p
p
R1

z e�t2

dt.

If a power allocation is given, then we can simply check

whether it satisfies the outage constraint (34) or not.

Unfortunately, however, it is difficult to solve the problem

[CM-Avg-Full] simultaneously considering both con-

straints (28) and (34) because (34) has a very complicated

form. Therefore, we alternatively develop a suboptimal

power allocation algorithm, which repeatedly (however, it

is fast because it requires only a few iterations based on

binary search.) solves a subproblem having only a transmit-

power constraint using the classical water-filling algorithm

and then adjusts the available transmit power P until the

desired outage probability is achieved. The following

Proposition 2 tells us that the outage probability is a strictly

increasing function of P, and thus we can determine a

unique P by using binary search method.

Proposition 2 The Pout(p) is a strictly increasing function

of the available transmit power P if the conventional

WaterFillingðPÞ is applied, i.e., pn = [ 1/l - mn/g2
n]? for

all subchannels n 2 N , where l satisfies
P

n2N pn ¼ P.

Proof Due to the property of the water-filling algorithm,

if the available transmit power P increases, then pn does

not decrease for any subchannel n and at least more than

one pn increase. Accordingly, both m and r2 in (32)

increase as well. Since the erfcð�Þ is a decreasing function,

PoutðpÞ ¼ 1
2

erfc NImax�mffiffi
2
p

r


 �
is a strictly increasing function of

P. This completes the proof. h

The following proposed algorithm describes the detailed

procedure to find a suboptimal power allocation for

[CM-Avg-Partial] with the help of Proposition 2.

Algorithm for [CM-Avg-Partial]

1: Initialize:

P ¼ Pmax and p ¼WaterFilling ðPmaxÞ.
If PoutðpÞ[ �þ d, then a; b½ �  ½0;Pmax�,
Else, go to Finish.

2: Repeat (binary search):

P ¼ ðaþ bÞ=2 and p ¼WaterFilling ðPÞ.
If PoutðpÞ[ �þ d, then a; b½ �  ½a;P�,
Else if PoutðpÞ\�� d, then a; b½ �  ½P; b�,
Else, go to Finish.

3: Finish: p is a suboptimal power allocation.

4.3 Extension to multiple primary and/or secondary

receivers

In the multiple (say, K) SU-Rx case, the best strategy for

the SU-Tx is to choose the SU-Rx at each subchannel

n having the highest channel g2,k
n /mk

n from the SU-Tx to the
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k-th SU-Rx. In the multiple (say, M) PU-Rxs case, although

there are multiple interference-power constraints, one

constraint with the highest average channel gain k21,m can

dominate the others. Therefore, we can obtain the optimal

power allocation policies for multiple primary and/or sec-

ondary receivers by simply modifying the algorithms for

[CM-Peak-Partial] and [CM-Avg-Partial] as follows:

k21  max
m

k21;m; for M PU-Rxs, ð35Þ

gn
2=m

n  max
k

gn
2;k=m

n
k ; for K SU-Rxs. ð36Þ

5 Numerical results

We consider the CR network model as shown in Fig. 1 for

our simulations. All channel gains ½gn
11; n 2 N �; ½gn

12; n 2
N �; ½gn

21; n 2 N � and ½gn
22; n 2 N � are independent of each

other, and independent and identically distributed (i.i.d.)

over all the subchannels. They have unit mean unless

specified otherwise. Without loss of generality, the total

noise power over the spectrum ðN0BÞ � N is set to be one

and the interference-temperature thresholds are adapted to

the level of noise power, i.e., Imax = Imax
n = 1/N for all

subchannels n. We obtain numerical results based on the

average performance taken over 10,000 randomly gener-

ated channel realizations.

For performance comparison, we further consider sim-

ple baseline algorithms based on equal power allocation. In

four different capacity maximization problems under either

peak or average interference constraint with either full or

partial inter-system information, we assume that the

transmit power is evenly allocated to all subchannels, i.e.,

pn = p for all n 2 N . Then, we can easily derive the equal

power allocation algorithms as follows.

– [EQ-Peak-Full]: p ¼ min minn2N
In
max

gn
1

; Pmax

N

h i

– [EQ-Avg-Full]: p ¼ min NImaxP
n2N gn

1

; Pmax

N

� �

– [EQ-Peak-Partial]: p ¼ min
In
max

F�1
E 1��ð Þ ;

Pmax

N

h i

– [EQ-Avg-Partial]: p ¼ min NImax

F�1
ERL 1��ð Þ ;

Pmax

N

h i

where F�1
E ð�Þ is the inverse CDF of an exponential

distribution with the mean k21, and F�1
ERLð�Þ is the inverse

CDF of an Erlang distribution, X�Erlang N; 1=k21ð Þ.

5.1 Performance of the power allocation policies

with full inter-system CSI

We first compare the performance of the proposed power

allocation policies with full CSI when N = 32. In addition,

we investigate the impact of the power allocation policies

of the PU on the performance of the SU. To this end, either

water-filling (WF) or equal power allocation policy is

considered as PU’s policy. Thus, the following four com-

binations [PU’s policy/SU’s policy] are evaluated: [WF/

CM-Avg-Full], [WF/CM-Peak-Full], [EQ/CM-Avg-Full]

and [EQ/CM-Peak-Full]. For your information, two cases

where the PU is limited by either the peak or the average

interference-power level are represented by dotted and

solid lines in the forthcoming figures, respectively.

Figure 3(a) shows the spectral efficiency of the SU by

varying Pmax. For reference, we include the case without

interference constraint (i.e., Imax ¼ In
max ¼ 1 for all n 2 N ),

where in which the spectral efficiency increases logarith-

mically. In the small Pmax regime, even though there is a

limitation on the amount of interference, the spectral effi-

ciencies for all cases are almost identical because the per-

formance is mainly limited by its own power rather than the

interference, i.e., power-limited regime. However, it tends to

be eventually saturated as the Pmax increases, i.e., interfer-

ence-limited regime. It should be noted that the average

interference-power constraint (13) is looser than the peak

interference-power constraint (9), and accordingly, allows

the SU to have more flexible power allocations. This

explains why the spectral efficiency with the former (solid

line) is always better than that with the latter (dotted line),

e.g., about 20 % in terms of the saturated performance.

Interestingly, PU’s WF policy (blue line) maximizing its

own channel capacity egoistically improves the performance

of the SU as well compared to the EQ policy (red line). This

is because the frequency-selective power allocation of the

PU brings additional frequency-selectivity to the SU.

Figure 3(b) shows results obtained by varying Imax. On

the contrary to the previous result in Fig. 3(a), the spectral

efficiency starts from the interference-limited regime to the

power-limited regime as the Imax increases. Other trends

can be understood similarly, e.g., the spectral efficiency

under the peak and average interference-power constraints

and the effect of PU’s policy on the performance of the SU.

It is also worthwhile mentioning that our proposed optimal

algorithms always perform better than the baseline equal

power allocations by exploiting the two-dimensional

opportunism of frequency-selectivity.

5.2 Effect of channel correlation

Figure 4 illustrates the effect of channel correlation on the

performance of the secondary system. We introduce the

following channel model gij
n = |hij

n|2 in order to adjust the

level of frequency selectivity by a correlation parameter

a 2 ½0; 1�.
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hn
ij ¼

xn; if n ¼ 1;ffiffiffi
a
p

hn�1
ij þ

ffiffiffiffiffiffiffiffiffiffiffi
1� a
p

xn; otherwise;

�
ð37Þ

and {xn} are zero-mean unit-variance complex Gaussian

random variables and i.i.d. over all subchannels [34]. Note

that the frequency selectivity becomes higher as a correla-

tion parameter a decreases. If a = 0, then the channel of

each subchannel is assumed to be independent of each other.

On the other hand, if a = 1, then the channel is assumed to

be frequency-flat, that is, the same as the single channel

setting. For all power allocation policies, the spectral effi-

ciency decreases as the correlation a increases because the

correlation reduces the degree of freedom in frequency

domain.

5.3 Performance of the power allocation policies

with partial inter-system CSI

We now examine the performance of the proposed power

allocation policies with partial CSI by choosing N = 128

and � ¼ 0:05. The error tolerance d for [CM-Avg-Partial] is

chosen to be a small value of 10-5. For your information, the

number of iterations until the convergence of binary search

for [CM-Avg-Partial] was less than 15 times on average.

Figure 5(a) shows the spectral efficiency for the SU with

respect to the maximal transmit power for different com-

binations of the ratio w = k21 / k22 (we fix k22 = 1 and

vary k21). In the low Pmax regime, the spectral efficiency

increases as the available power increases. On the other

hand, when Pmax is greater than a certain turning point, the

spectral efficiency does not further increase because the

interference-power outage constraint becomes dominant.

We indicate the boundary between power-limited and

interference-limited regimes in the case of [CM-Avg-Par-

tial] and w = 1 in the middle of figures.

Reducing the ratio w increases the spectral efficiency

due to loosing interference-power outage constraints (i.e.,

the PU goes far away from the SU). It is important to

highlight that the SU can always obtain the higher spectral

efficiency in [CM-Avg-Partial] than [CM-Peak-Partial],

e.g., more than two times in terms of the saturated per-

formance. This is because the more sophisticated PU

instead of the dumb one gives additional freedom in power

allocation to the SU. We may confirm this argument by

comparing the interference-power outage constraint of

[CM-Avg-Partial] with that of [CM-Peak-Partial]. Since

the average interference-power outage constraint (29) is

looser than the peak interference-power outage constraint

(23) at the same interference-temperature Imax
n = Imax for

all n 2 N , more flexible power allocation is possible.

Figure 5(b) shows the outage probability for the PU. In

the power-limited regime, the outage probability is much

lower than a target � ¼ 0:05. If we keep increasing Pmax
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until the interference-limited regime, then the outage

probability is saturated to the target. The optimal algorithm

for [CM-Peak-Partial] always achieves the exact target

requirement, while the suboptimal algorithm for [CM-Avg-

Partial] exhibits a small deviation from the target value due

to Gaussian approximation error.

5.4 Effect of the number of subchannels on gaussian

approximation error

In Figure 6, we investigate the relationship between the

total number of subchannels available and Gaussian

approximation error. As it can be seen in the figure, the

saturated outage probability sticks to the target outage level

as the number of subchannels N increases. In other words,

the approximation error asymptotically goes to zero.

However, if the system does not have the sufficient number

of subchannels, a suitable margin on the target error

probability will be necessary to make the system robust.

5.5 Performance comparison of power allocation

policies with full and partial inter-system CSI

Figure 7 compares the spectral efficiency in the cases of full

and partial CSI. We also include the performance without

the interference constraint as a reference. As can be

observed, the spectral efficiency of power allocation poli-

cies with partial CSI in the interference-limited regime

increases as the target outage probability � increases

because the SU can allocate the power aggressively with

looser outage constraint. At the extreme point where � goes

to 1, the spectral efficiency with partial CSI becomes

equivalent to that without the interference constraint, which

might be better than that of algorithms with full CSI.
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However, within a reasonable range of outage probability �,

e.g., less than 10 % , the spectral efficiency with partial CSI

is less than half of the spectral efficiency with full CSI. It is

also worthwhile mentioning that PU’s robust tolerability is

much beneficial to the SU with partial CSI, e.g., the average

interference-power tolerable PU can help to increase the

saturated spectral efficiency of the SU by about 20 and

50 % in the cases of full and partial CSI, respectively.

5.6 Effect of multiple primary and/or secondary

receivers

Now let us consider the scenarios with multiple primary and

secondary receivers. Figure 8 shows the aggregate spectral

efficiency of all SUs for the case of [CM-Peak-Full]. We

vary both the numbers of primary and secondary receivers,

denoted by M and K, respectively, as 1, 2, 4 and 8.

Two observations can be clearly made, which are consis-

tent with the analysis presented in Sect. 3.3. (i) The more

SU-RXs K are, the higher aggregate spectral efficiency is

likely to be expected due to the multi-user diversity gain. (ii)

On the other hand, the more PU-RXs M are, the lower

aggregate spectral efficiency is likely to be expected due to

the tighter constraints limiting the transmitting power.

Although we do not provide the results for the other cases due

to limited space, but we also observe similar trends with those

in Fig. 8.

6 Conclusion

In this paper, we have investigated both cases where inter-

system CSI is fully and partially available to PU-Tx

in OFDM-based underlay CR networks. We have also

considered two types of PUs having different capabilities:

peak and average interference tolerable. Accordingly, we

have formulated four problems ([CM-Peak-Full], [CM-Avg-

Full], [CM-Peak-Partial] and [CM-Avg-Partial]), and pro-

posed optimal and efficient suboptimal power allocation

policies for the problems. Through extensive simulations

under various scenarios, we have shown that (i) the spectral

efficiency achieved by the SU with partial CSI is less than

half of what is achieved by the SU with full CSI within a

reasonable range of outage probability (e.g., less than 10 %),

and (ii) more robust capability of the PU (i.e., average

interference-power tolerable) can help to increase the satu-

rated spectral efficiency of the SU by about 20 and 50 % in

the cases of full and partial inter-system CSI, respectively.

As future work, an extension to more general channel

models that include correlation or feedback delay would be

an interesting topic.
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Appendix

A Proof of Lyapunov condition

Lyapunov condition :

lim
N!1

PN
n¼1 r3

n

� �1
3

PN
n¼1 r2

n

� �1
2

¼ 0; ð38Þ

where rn is defined as the third central moment of random

variable Xn, i.e., E ðXn � mnÞ3
h i

; mn and rn
2 are the finite

mean and variance of the Xn, respectively.

Proof The third central moment of the random variable

Xn can be written as

r3
n ¼ E ðXn � mnÞ3

h i
ð39Þ

¼ E X3
n

� 
� 3mnE X2

n

� 
þ 2m3

n: ð40Þ

The random variable Xn = png1
n is independently

exponential distributed with mean pnk21. By plugging the

following statistics (41)-(41) for Xn into (40), we can

readily obtain the third central moment, rn
3 = 2(pnk21)3.

mean: E½Xn� ¼ mn ¼ pnk21;

variance: Var½Xn� ¼ r2
n ¼ ðpnk21Þ2;

2th moment: E½X2
n � ¼ 2ðpnk21Þ2;

3rd moment: E½X3
n � ¼ 6ðpnk21Þ3:

The power allocation pn for the subchannel n 2 N ¼
f1; 2; . . .;Ng is a nonnegative value, whereas the average

channel gain k21 is a positive value. To exclude

meaningless summations in (38), we define the set of
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Fig. 8 Effect of multiple primary and/or secondary receivers in the

case of [CM-Peak-Full]
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subchannels with positive power as N 0¼: n j pn [ 0;f
8n 2 Ng. Since k21 and pn are finite, there exists positive

maximum and minimum values of pnk21 over the set N 0.
Let us define the maximum and minimum values as M ¼
maxn2N 0 pnk21 [ 0 and m ¼ minn2N 0 p

nk21 [ 0, respec-

tively. Thus, in the (38), the numerator can be upper-

bounded and the denominator can be lower-bounded as

follows:

X

n2N
r3

n

 !1
3

¼
X

n2N 0
2ðpnk21Þ3

 !1
3

� jN 0j � 2M3
� �1

3; ð41Þ

jN 0j � m2
� �1

2�
X

n2N 0
ðpnk21Þ2

 !1
2

¼
X

n2N
r2

n

 !1
2

; ð42Þ

where jN 0j denotes the cardinality of set N 0. Note that as

N tends to infinity, jN 0j goes to infinity as well. Using the

upper-bound of the numerator (41) and the lower-bound of

the denominator (42), we can obtain the Lyapunov

condition in the (38).

lim
N!1

PN
n¼1 r3

n

� �1
3

PN
n¼1 r2

n

� �1
2

� lim
N!1

jN 0j � 2M3
� �1

3

jN 0j � m2
� �1

2

ð43Þ

¼ lim
jN 0j!1

2
1
3M

m
� 1

jN 0j
1
6

¼ 0: ð44Þ

This completes the proof. h
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